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An important goal of heterotic superstrings and M -theory is to show that these higher-

dimensional theories can be “compactified” to four-dimensional, phenomenologically realis-

tic particle physics. Specifically, one would like to prove that the minimal N = 1 supersym-

metric standard model (MSSM), modified by the addition of three right-handed neutrino

chiral supermultiplets, one per family, can arise in this manner. The necessity of having

three right-handed neutrino supermultiplets puts strong constraints on heterotic model

building. A natural way to achieve this is to compactify on smooth Calabi-Yau threefolds

that admit slope-stable, holomorphic vector bundles with structure group SU(4). The non-

vanishing connections associated with these bundles then spontaneously break the E8 group

of the heterotic theory down to Spin(10). Each 16 representation of Spin(10) contains a

complete family of quarks/leptons plus a right-handed neutrino, exactly as required.

A second requirement is that the four-dimensional theory be symmetric, at least to a

low energy scale, under R-parity [1, 2] or, equivalently in a supersymmetric theory, matter-

parity. This Z2 symmetry prohibits dangerous baryon and lepton violating processes, such

as rapid nucleon decay. The requirement of R-parity, however, also puts additional strong

constraints on heterotic model building. While it is difficult in realistic smooth heterotic

compactifications to obtain a Z2 symmetry of the four-dimensional theory, in particular of

the soft supersymmetry breaking interactions, it is straightforward to extend the standard

model group by a gauged U(1)B−L, which contains matter-parity. Models of this type have

been proposed within the context of field theory [3–7] and some string theories, such as

heterotic orbifolds [8], in which, in addition to the MSSM matter spectrum, new chiral

fields are added for which 3(B − L) is an even, non-zero integer. These new fields can

acquire vacuum expectation values (VEVs) which, while spontaneously breaking gauged

B-L symmetry at a high scale, preserve the matter-parity subgroup. Unfortunately, this

is never possible in realistic smooth compactifications of heterotic theory, since the E8

decomposition under the vector bundle structure group never has representations satisfying

this condition. It follows that, in smooth heterotic compactifications, one is forced to

consider the remaining possibility; that is, that U(1)B−L is spontaneously broken by 3(B−
L) odd fields at a scale not too far above the electroweak scale. This will play the same

role of suppressing baryon and lepton number violating operators.

In fact, a gauged U(1)B−L group arises naturally in the Spin(10) models discussed

above. The traditional way to break the rank five Spin(10) to the standard model gauge

group is by extending the SU(4) bundle with Abelian Wilson lines. These, however, pre-

serve the rank of the gauge group and, hence, the rank four standard model group must

be extended by a product with a rank one group, precisely, it turns out, U(1)B−L. A class

of smooth heterotic compactifications of this type were constructed in [9, 10]. Specifically,

they compactify heterotic theory on elliptically fibered Calabi-Yau threefolds that admit

a fixed-point free Z3 × Z3 isometry [11, 12]. Slope-stable holomorphic vector bundles

with structure group SU(4) were constructed over them which spontaneously break E8 to

Spin(10). The Abelian Z3×Z3 Wilson lines then further break Spin(10) to the low-energy

gauge group

G = SU(3)C × SU(2)L × U(1)Y × U(1)B−L . (1)
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The manifold and vector bundles being Calabi-Yau and slope-stable, holomorphic respec-

tively, assure that the four-dimensional theory is N = 1 supersymmetric. In addition to

the vector superfields corresponding to the gauge group in (1), the low-energy matter spec-

trum was found, using cohomology techniques introduced in [13–15], to be three families

of quark and lepton chiral superfields, each family with a right-handed neutrino. They

transform under the gauge group in the standard manner as

Qi = (3,2, 1/3, 1/3), ui = (3̄,1,−4/3,−1/3), di = (3̄,1, 2/3,−1/3)

Li = (1,2,−1,−1), νi = (1,1, 0, 1), ei = (1,1, 2, 1) (2)

for the left and right-handed squarks and leptons respectively, where i = 1, 2, 3. The

spectrum also contains one pair of Higgs-Higgs conjugate chiral superfields transforming as

H = (1,2, 1, 0), H̄ = (1,2,−1, 0). (3)

This is precisely the matter and Higgs spectrum of the MSSM. In addition, the theory

contains three Kahler moduli, three complex structure moduli and thirteen vector bundle

moduli, all of which are uncharged under the gauge group (1).

The supersymmetric potential energy is given by the usual sum over the modulus

squared of the F and D-terms. The F -terms are determined from the most general super-

potential invariant under the gauge group,

W = µHH̄ +
3
∑

i,j=1

(

λu,ijQiHuj + λd,ijQiH̄dj + λν,ijLiHνj + λe,ijLiH̄ej

)

(4)

Note that the dangerous lepton and baryon number violating interactions

LiLjek, LiQjdk, uidjdk (5)

which generically would lead to rapid nucleon decay, are disallowed by the U(1)B−L gauge

symmetry. To simplify the calculations, we will assume a mass-diagonal basis where λu,ij =

λd,ij = λν,ij = λe,ij = 0 for i 6= j and denote the diagonal Yukawa couplings by λii = λi,

i = 1, 2, 3. A constant, field-independent µ parameter cannot arise in a supersymmetric

string vacuum since the Higgs fields are zero modes. However, the HH̄ bilinear can have

higher-dimensional couplings to moduli through both holomorphic and non-holomorphic

interactions in the superpotential and Kahler potential respectively. When moduli acquire

VEVs due to non-perturbative effects, these can induce non-vanishing supersymmetric

contributions to µ. A non-zero µ can also be generated by gaugino condensation in the

hidden sector. Why this induced µ-term should be small enough to be consistent with

electroweak symmetry breaking is a difficult, model dependent problem. In this paper,

we will not discuss this “µ-problem”, but simply assume that the µ parameter is at, or

below, the electroweak scale. In fact, so as to empasize the B-L/electroweak hierarchy and

simplify the calculation, we will take µ, while non-zero, to be substantially smaller than the

electroweak scale, making its effect sub-dominant. This can be implemented consistently

throughout the entire scaling regime.

– 3 –



J
H
E
P
1
0
(
2
0
0
9
)
0
1
1

The SU(3)C and SU(2)L D-terms are of the standard form, while

DY = ξY + gY φA
† (Y/2)AB φB , (6)

DB−L = ξB−L + gB−Lφ†
A (YB−L)AB φB

where the index A runs over all scalar fields φA. Note that each of these Abelian D-

terms potentially has a Fayet-Iliopoulos (FI) additive constant. As with the µ parameter,

constant field-independent FI terms cannot occur in string vacua since the low energy fields

are zero modes. Field-dependent FI terms can occur in some contexts, see for example [17].

However, since both the hypercharge and B-L gauge symmetries are anomaly free, such

field-dependent FI terms are not generated in the supersymmetric effective theory. We

include them in (6) since they can, in principle, arise at a lower scale from radiative

corrections once supersymmetry is softly broken [18]. Be that as it may, if calculations are

done in the D-eliminated formalism, which we use in this paper, these FI parameters can be

consistently absorbed into the definition of the soft scalar masses and their beta functions.

Hence, we will no longer consider them.

In addition to the supersymmetric potential, the Lagrangian density also contains

explicit “soft” supersymmetry violating terms [19]. Those relevant to this paper are Vsoft =

V2s + V2f , where V2s are the scalar quadratic terms

V2s =
3
∑

i=1

(m2
Qi
|Qi|2 + m2

ui
|ui|2 + m2

di
|di|2 + m2

Li
|Li|2 + m2

νi
|νi|2

+m2
ei
|ei|2) + m2

H |H|2 + m2
H̄ |H̄|2 − (BHH̄ + hc), (7)

and V2f contains the gaugino mass terms

V2f =
1

2
M3λ3λ3 + . . . hc. (8)

As above, we have taken the parameters in (7) and (8) to be flavor-diagonal. Cubic scalar

interactions as well as the remaining gaugino mass terms can be chosen small enough to

be ignored in this calculation, as discussed below.

The heterotic compactifications described here satisfy the two criteria discussed above;

that is, they give softly broken N = 1 supersymmetric theories with exactly the MSSM

matter spectrum with three right-handed neutrinos, and their gauge group extends the

standard model group by precisely a factor of U(1)B−L. However, to be realistic, these

theories must spontaneously break the U(1)B−L symmetry not too far above the elec-

troweak scale. Clearly, this can only be accomplished if at least one of the right-handed

sneutrinos develops a non-vanishing vacuum expectation value. It is straightforward to

show using (4), (6) and (7) that, assuming one is free to choose all parameters at the

electroweak scale, both U(1)B−L and electroweak symmetry can be broken with a realistic

hierarchy between them. Quintessentially, however, one is not free to so choose the pa-

rameters. As is well-known, their initial values just below the compactification scale are

set by the geometric and bundle moduli expectation values [20–24]. At any lower scale,
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the parameters are determined by a complicated set of intertwined, non-linear renormal-

ization group equations (RGEs) [25–31]. Even if one chooses the initial values arbitrarily,

it is unclear that these will allow for an appropriate spontaneous breakdown of both the

U(1)B−L and electroweak symmetries. There are many potential problems that can occur.

These range, for example, from inducing color or charge breaking expectation values, to

not being able to break B-L at all, to breaking B-L but inducing a correlation with elec-

troweak breaking that is unphysical, such as the electroweak scale being much larger than

the B-L scale, and so on. All of these scenarios are easily realized. To prove that both

U(1)B−L and electroweak symmetries can be broken with an appropriate hierarchy, one

must show this explicitly by solving the RGEs for a specific choice of initial parameters. In

this paper, we present the results of a quasi-analytic solution of the renormalization group

equations valid for a restricted range of parameter space. The detailed calculations will

be given elsewhere [32]. It will be shown in [32] that initial parameters can be chosen so

that U(1)Y and U(1)B−L kinetic mixing [33, 34] is small. Hence, we ignore such mixing in

this paper. This solution demonstrates that an appropriate B-L/electroweak hierarchy can

indeed be achieved for a range of initial parameters. We have backed up these results with

explicit numerical solutions of the RGEs that will be presented elsewhere.

We begin our analysis with the renormalization group solution for the gauge pa-

rameters, ga, a = 1, . . . , 4, chosen so as to unify to g(0) ≃ .726 at the scale Mu ≃
3× 1016 GeV [35]. This choice of parameters requires the redefinition gY =

√

3
5g1, gB−L =

√

3
4g4. One then finds, at an arbitrary scale t = ln( µ

Mu
), that

ga(t)
2 =

g(0)2

1 − g(0)2bat
8π2

, a = 1, . . . , 4 ~b =

(

33

5
, 1,−3, 12

)

. (9)

These results will be used throughout the analysis. We note that threshold effects and

mass splitting between sleptons/squarks will tend to defocus gauge coupling unification.

We will ignore these effects in the present paper. Now consider the gaugino masses or, more

specifically, the products g2
a|Ma|2, a = 1, . . . , 4 that occur in the beta functions. Denoting

the initial values of the gaugino masses by |Ma(0)|, one finds

ga(t)
2|Ma(t)|2 =

g(0)2|Ma(0)|2
(

1 − g(0)2bat
8π2

)3 . (10)

Even assuming that the gaugino masses are “unified” at t = 0, making any ratio
ga(0)2|Ma(0)|2
gb(0)2|Mb(0)|2 unity, it is clear that the gluino mass contributions will quickly grow to

dominate. For example, at the electroweak scale the ratio of the gluino to the SU(2)L
gaugino terms is 25.6. In this paper, so as to simplify the calculation and allow for

a quasi-analytic solution, we will not assume unified gaugino masses, instead taking

|M1(0)|2, |M2(0)|2, |M4(0)|2 ≪ |M3(0)|2. It follows that in beta functions containing a

gluino mass term, the other gaugino terms are sub-dominant everywhere in the scaling

regime and can be ignored. Recall that “non-unified” gaugino masses easily occur in string

vacua, while unification requires additional “minimal” criteria [27, 31]. These are not
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generically satisfied in our MSSM theory. A similar justification can be made for ignoring

soft cubic scalar interactions as sub-dominant.

Next, we make a specific choice for the scalar masses at the unification scale Mu. These

are taken to be

mH(0)2 = mH̄(0)2, mQi
(0)2 = muj

(0)2 = mdk
(0)2,

mLi
(0)2 = mej

(0)2 6= mνk
(0)2 (11)

for all i, j, k = 1, 2, 3. Note that the sneutrino masses are different than those of the re-

maining sleptons. This asymmetry is one ingredient in breaking U(1)B−L at an appropriate

scale. Other than that, this choice is taken so as to simplify the RGEs as much as possible

and to allow a quasi-analytic solution. We point out that soft scalar masses need not be

“universal” in string theories, since they are not generically “minimal”. We emphasize that

a B-L/electroweak hierarchy is possible for a much wider range of initial parameters.

Since the U(1)B−L symmetry should be spontaneously broken by right-handed sneutri-

nos at energy-momenta larger than the electroweak scale, we begin by restricting the analy-

sis to the slepton sector. This is possible, in part, because initial conditions (11) allow a de-

coupling of sleptons from the squarks and Higgs fields in the RGEs . These fields will be dis-

cussed later. Subject to the initial conditions (11) and associated assumptions, we find that

mLi
(t)2 = mLi

(0)2 +
1

6

(

1 −
(

1 − g(0)2b4t

8π2

)−9/4b4
)

S ′
1(0),

mei,νi
(t)2 = mei,νi

(0)2 − 1

6

(

1 −
(

1 − g(0)2b4t

8π2

)−9/4b4
)

S ′
1(0) (12)

where

S ′
1(0) =

3
∑

i=1

(−mLi
(0)2 + mνi

(0)2) 6= 0 . (13)

Note that in deriving (12), we have assumed |M1(0)|2, |M2(0)|2, |M4(0)|2 ≪ S ′
1(0).

Using (10) and (12), it follows that the hypercharge, SU(2)L and B-L gaugino terms are

sub-dominant to g2
4S ′

1 at any scale. Hence, even in the slepton beta functions, which do

not have a gluino contribution, the gaugino terms can be ignored.

Given these results, one can now consider U(1)B−L breaking at scales on the order

of 104 GeV or, equivalently, at tB−L ≃ −28.7. We begin by discussing the quadratic

mass terms near the origin of field space. The relevant part of the scalar potential is

V = V2s + 1
2D2

B−L, where V2s and DB−L are given in (7) and (6) respectively. Recall that

the FI term is absorbed into the definition of the soft mass parameters. Expanding this,

the slepton quadratic terms at any scale t are

Vm2
sleptons

=

3
∑

i=1

(m2
Li
|Li|2 + m2

ei
|ei|2 + m2

νi
|νi|2) , (14)

where i = 1, 2, 3 and the slepton masses are given by (12), (13). The first requirement

for spontaneous B-L breaking is that at least one of the slepton effective squared masses

– 6 –
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becomes negative at tB−L. Clearly, this cannot happen for mLi
(tB−L)2, which is always

positive. However, if the initial squared masses are sufficiently small and S ′
1(0) sufficiently

large, both mei
(tB−L)2 and mνi

(tB−L)2 can become negative. Since the ei fields are elec-

trically charged, we do not want them to get a VEV and, hence, we want mei
(tB−L)2 to

be positive. On the other hand, the νi fields are neutral in all quantum numbers except

B-L. Hence, if they get a nonzero VEV this will spontaneously break B-L at tB−L, but

leave the SU(3)C × SU(2)L ×U(1)Y gauge symmetry unbroken. This is indeed possible for

a wide range of initial parameters. For simplicity, let us choose the initial right-handed

slepton masses to satisfy

mν1
(0) = mν2

(0) = Cmν(0), mν3
(0) = mν(0),

me1
(0) = me2

(0) = me3
(0) = Amν(0) (15)

which imply, using (11) and (13), that

S ′
1(0) = (1 + 2C2 − 3A2)mν(0)

2 . (16)

Taking, for specificity, A =
√

6 and C ≃ 9.12, then

S ′
1(0) = 149 mν(0)

2 (17)

and it follows from (9), (11), (12) and (15) that

mν1,2
(tB−L)2 ≃ 78.2 mν(0)

2, mν3
(tB−L)2 = −4mν(0)

2,

mLi
(tB−L)2 = 11mν(0)2, mei

(tB−L)2 = mν(0)
2 (18)

for 1 = 1, 2, 3. We conclude from (18) that, near the origin of field space, there are

positive quadratic mass terms in the Li, ei and ν1,2 field directions for i = 1, 2, 3. However,

mν3
(tB−L)2 is negative, suggesting a non-zero VEV in the ν3 direction.

To determine this, one must minimize the complete potential V = V2s + 1
2D2

B−L for

the slepton fields. Restricted to these scalars, we find that the vacuum specified by

〈ν1,2〉 = 0, 〈ν3〉 =
2mν(0)
√

3
4g4

, 〈Li〉 = 〈ei〉 = 0 (19)

with i = 1, 2, 3 is a local minimum of V . The slepton masses at this VEV are

〈m2
ν1,2

〉 ≃ 82.2 mν(0)
2, 〈m2

ν3
〉 = 8mν(0)2,

〈m2
Li
〉 = 7mν(0)2, 〈m2

ei
〉 = 5mν(0)2 . (20)

Vacuum (19) spontaneously breaks the gauged B-L symmetry giving the B-L vector boson

a mass,

MAB−L
= 2

√
2mν(0) , (21)

while preserving the remaining SU(3)C × SU(2)L × U(1)Y gauge group. Note that this

result is quite robust, and should be applicable to any theory containing at least two

right-handed sneutrinos.
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We now include the Higgs fields and squarks, and analyze their masses at tB−L around

vacuum (19). To the order we are working,

m2
H̄ ≃ mH(0)2 . (22)

Using the previous assumptions, the hierarchy of Yukawa couplings, choosing

mQ3
(0)2 =

mH(0)2

2
, (23)

and requiring that m2
H be positive at all relevant scales, we find that

m2
H ≃ mH(0)2e

− 3

4π2

R 0

t
|λu3

|2
0

@1+

2

4

− 2

3π2

R t′
0 g2

3|M3|
2

m2
H

3

5

1

A

. (24)

Since λu3
scales slowly, we take it to be constant with its phenomenological value

λu3
(0) = 1 . (25)

As discussed previously, a non-vanishing supersymmetric µ parameter can arise from non-

perturbative effects in the moduli and hidden sector. To simplify the calculations and

focus on the B-L/electroweak hierarchy, we will, henceforth, assume that the µ parameter,

while non-zero, is sufficiently smaller than the electroweak scale so that its effects are sub-

dominant. Once this is implemented at one scale, it remains true over the entire scaling

regime. Then, under the previous assumptions, the quadratic pure Higgs potential arises

solely from (7) and is given by Vm2
Higgs

= m2
H |H|2 + m2

H̄
|H̄|2 − B(HH̄ + hc), where m2

H ,

m2
H̄

are given in (24), (22) and B satisfies a relatively simple RGE that won’t be discussed

here. Henceforth, we assume that for t ≪ 0 the coefficient B is such that

4

(

B

m2
H − m2

H̄

)2

≪ 1 . (26)

This is easily arranged by adjusting B(0). The Higgs mass matrix can then be diagonalized

to Vm2
Higgs

= m2
H′ |H ′|2 + m2

H̄′ |H̄ ′|2, where

m2
H′ ≃ m2

H − m2
H̄

(

B

m2
H − m2

H̄

)2

, m2
H̄′ ≃ m2

H̄ − m2
H

(

B

m2
H − m2

H̄

)2

(27)

and

H ′ ≃ H −
(

B

m2
H − m2

H̄

)

H̄∗, H̄ ′ ≃
(

B

m2
H − m2

H̄

)

H∗ + H̄ . (28)

It follows from (22), (26), and (27) that for any t ≪ 0

m2
H̄′ ≃ m2

H̄ = mH(0)2 > 0 . (29)

Importantly, however, we see from (24), (27) that as t becomes more negative m2
H can

approach, become equal to and finally become smaller than m2
H̄

(B/(m2
H − m2

H̄
))2. As
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discussed shortly, our requirement that m2
H be positive forces m2

H′ to vanish below tB−L.

We conclude that at the B-L scale and evaluated at vacuum (19), the Higgs masses are

〈m2
H′〉 > 0, 〈m2

H̄′〉 ≃ mH(0)2 (30)

and, hence, electroweak symmetry is not yet broken.

Now include the squarks and analyze their masses at tB−L around vacuum (19). Within

the assumptions and approximations discussed earlier, it is straightforward to solve the

renormalization group equations for the squarks at arbitrary scale t. The simplest are

given by

m2
Q1,2

≃ − 2

3π2

∫ t

0
g2
3 |M3|2 +

1

64π2

∫ t

0
g2
4S ′

1 +
mH(0)2

2
,

m2
u1,2, di

≃ − 2

3π2

∫ t

0
g2
3 |M3|2 −

1

64π2

∫ t

0
g2
4S ′

1 +
mH(0)2

2
(31)

where i = 1, 2, 3 and

− 2

3π2

∫ t

0
g2
3 |M3|2 = − 8

3b3







1
(

1 − g(0)2b3t
8π2

)2 − 1






|M3(0)|2 , (32)

− 1

64π2

∫ t

0
g2
4S ′

1 = − 1

18







1
(

1 − g(0)2b4t
8π2

) 9
4b4

− 1






149 mν(0)

2 . (33)

Note that both integrals (32) and (33) are positive for t < 0. Somewhat more

complicated are

m2
Q3

≃ 1

3
m2

H − 2

3π2

∫ t

0
g2
3 |M3|2 +

1

64π2

∫ t

0
g2
4S ′

1 +
1

6
mH(0)2 ,

m2
u3

≃ 2

3
m2

H − 2

3π2

∫ t

0
g2
3 |M3|2 −

1

64π2

∫ t

0
g2
4S ′

1 −
1

6
mH(0)2 . (34)

The masses in (31) and (34) depend, a priori, on three independent initial parameters,

M3(0), mν(0) and mH(0). We will relate them as follows. It is clear from (24) that for m2
H

to have the appropriate behavior at the electroweak scale fixes M3(0) relative to mH(0).

This will be discussed below. Here, we simply use the result that

|M3(0)|2 = .0352 mH(0)2 . (35)

It is also essential that color and charge be unbroken at the electroweak scale. If we further

require that this be the case for all scales t, then, as will be discussed shortly, one finds

mν(0)
2 = 0.864 mH(0)2 . (36)

In both (35) and (36) we present only the leading, (B/(m2
H − m2

H̄
))2 independent results

for these quantities.
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For these restricted parameters, the m2
H contributions to (34) are small and can be

ignored. Furthermore, at tB−L the Higgs fields have vanishing VEVs. Hence, we can com-

pute the squark masses at (19) using the relevant terms in V = V2s + 1
2D2

B−L . The squark

contribution to the quadratic potential is Vm2
squark

=〈m2
Qi
〉|Qi|2+〈m2

ui
〉|ui|2+〈m2

di
〉|di|2 with

〈m2
Qi
〉 = m2

Qi
+

1

4
g2
4 |〈ν3〉|2, (37)

〈m2
ui,di

〉 = m2
ui,di

− 1

4
g2
4 |〈ν3〉|2.

Using (31), (34) as well as (9) and (19), we find that at tB−L these squared masses are

given by

〈m2
Q1,2

〉 ≃ 0.408 mν(0)
2, 〈m2

Q3
〉 ≃ 0.0435 mν(0)

2,

〈m2
u1,2

〉 = 〈m2
di
〉 ≃ 1.08 mν(0)

2, 〈m2
u3
〉 ≃ 0.353 mν(0)

2 (38)

for i = 1, 2, 3. Note that they are all positive. It follows from (38) and (30) that (19) is

indeed a stable, local minimum with respect to all scalar fields at tB−L.

Let us now scale down further to the electroweak scale of order 102 GeV or, equivalently,

tEW ≃ −33.3. We simplify the notation and implement (26) by taking

T 2 ≡
(

B

m2
H − m2

H̄

)−2
>∼ 40 , (39)

and choose M3(0) so that

m2
H = (1 − ∆2)

mH(0)2

T 2
, t = tEW (40)

for 0 < ∆2 < 1. The upper bound on ∆2 arises from our requirement that m2
H be positive

for all t ≥ tEW . Using the previous assumptions and a numerical solution of (24), we find

that m2
H satisfies condition (40) if we choose

|M3(0)|2 = .0352

(

1 − 11.5(1 − ∆2)

T 2

)

mH(0)2 . (41)

This justifies (35) where, for simplicity, we dropped the weak T 2 dependence. It follows

from (27), (39) and (40) that at tEW

m2
H′ = −∆2mH(0)2

T 2
. (42)

Clearly electroweak breaking can only occur for positive ∆2, explaining our lower bound

on this parameter. Scaling (42) up to tB−L, we find that the constraint that ∆2 be less

than unity implies m2
H′ > 0, as claimed in (30).

To explore the breaking of electroweak symmetry, one must now consider the complete

Higgs potential, V = Vm2
Higgs

+ 1
2D2

Y + 1
2

∑3
a=1 D2

SU(2)La, at t = tEW . We express this in

– 10 –
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terms of the mass diagonal fields H ′ and H̄ ′ defined in (28), drop terms of O(T −3) and

write H ′ = (H ′+,H ′0), H̄ ′ = (H̄ ′0, H̄ ′−). This potential is easily minimized to give

〈〈H ′0〉〉 =
2∆ mH(0)

T
√

3
5g2

1 + g2
2

, 〈〈H ′+〉〉 = 〈〈H̄ ′0〉〉 = 〈〈H̄ ′−〉〉 = 0, (43)

where the double bracket 〈〈 〉〉 indicates the vacuum at tEW . The Higgs masses evaluated

at this VEV are found to be

〈〈m2
H′0〉〉 = 4

∆2 mH(0)2

T 2
, 〈〈m2

H̄′0〉〉 = 〈〈m2
H̄′−〉〉 ≃ mH(0)2 . (44)

The three non-radial component fields in H ′ are the Goldstone bosons associated with the

breakdown of electroweak symmetry. They are eaten by the Higgs mechanism to give mass

to the W± and Z bosons. For example, the Z mass is

MZ =

√
2∆ mH(0)

T ≃ 91GeV . (45)

Although the mass eigenstate basis H ′, H̄ ′ is the most natural for analyzing this vac-

uum, it is of some interest to express it in terms of the original H and H̄ fields. Using (28),

we find

〈〈H+〉〉 = 〈〈H̄−〉〉 = 0 (46)

and, to leading order, that

〈〈H0〉〉 =
2∆ mH(0)

T
√

3
5g2

1 + g2
2

, 〈〈H̄0〉〉 =
1

T 〈〈H0〉〉 . (47)

Note that the condition 〈〈H̄ ′0〉〉 = 0 in (43) does not imply the vanishing of 〈〈H̄0〉〉. Rather,

〈〈H̄0〉〉 is non-zero and related to 〈〈H0〉〉 through the ratio

〈〈H0〉〉
〈〈H̄0〉〉 ≡ tanβ = T + O(T −1) . (48)

We have indicated the O(T −1) contribution to emphasize that although tanβ = T to

leading order, this relationship breaks down at higher order in T −1. We conclude that

electroweak symmetry is spontaneously broken at scale tEW by the non-vanishing H ′0

vacuum expectation value in (43). This vacuum has a non-vanishing value of tanβ which,

using the assumption for T 2 given in (39), satisfies

tanβ
>∼ 6.32 . (49)

As far as the Higgs fields are concerned, the vacuum specified in (43) is a stable local mini-

mum. As a check on our result, choose µ2 ∼ O(T −4) or smaller, that is, non-vanishing but

sub-dominant in all equations. Then (29), (39) and (40) satisfy the constraint equations,

given, for example, in [27], for the Higgs potential to be bounded below and have a negative

squared mass at the origin. Furthermore, to the order in T −1 we are working, (45) and (47)

for the Higgs vacuum satisfy the minimization conditions in [27].
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To understand the complete stability of this minimum, it is essential to extend this

analysis to the entire field space; that is, to include all sleptons and squarks as well as the

Higgs fields. The relevant part of the potential energy is the sum of V2s and the DB−L,

DY and DSU(2)La contributions. The coefficients in this potential are to be evaluated at

tEW . We find a local extremum at

〈〈ν1,2〉〉 = 0, 〈〈ν3〉〉 = (1.05)
2mν (0)
√

3
4g4

, 〈〈Li〉〉 = 〈〈ei〉〉 = 0, (50)

〈〈H ′0〉〉 =
2∆ mH(0)

tanβ
√

3
5g2

1 + g2
2

, 〈〈H ′+〉〉 = 〈〈H̄ ′0〉〉 = 〈〈H̄ ′−〉〉 = 0

for i = 1, 2, 3. To guarantee that this is a stable local minimum, we must compute all of

the scalar squared masses at this VEV. The Higgs masses were given in (44). The slepton

masses in (20) and the squark masses in (38) are corrected in two ways, First, they must

be scaled down from tB−L to tEW . Secondly, they are altered by the non-zero Higgs VEVs.

Finally, in addition to (41) which relates M3(0) to mH(0), one must express mν(0) in terms

of mH(0). An overly restrictive but simple way to do this is the following. Demand that,

for any choice of tanβ and ∆, all squark and slepton mass squares are non-negative, and,

hence, color and electric charge are unbroken, for all values of t. We then find that

mν(0)
2 = 0.864

(

1 − 2.25(1 − ∆2)

T 2

)

mH(0)2 . (51)

This justifies (36) where, for simplicity, we dropped the weak T 2 dependence. Using the

above approximations and dropping appropriate terms of order T −2, the slepton and squark

mass squares are given by

〈〈m2
ν1,2

〉〉 ≃ 82.2 mH(0)2, 〈〈m2
ν3
〉〉 ≃ 8.75 mH(0)2, (52)

〈〈m2
Ni
〉〉 ≃ 〈〈m2

Ei
〉〉 ≃ 7.00 mH(0)2, 〈〈m2

ei
〉〉 ≃ 5.00 mH(0)2

and

〈〈m2
U3
〉〉 ≃ 〈〈m2

D3
〉〉 ≃ 0.132 mH(0)2,

〈〈m2
U1,2

〉〉 ≃ 〈〈m2
D1,2

〉〉 ≃ 0.465 mH(0)2, (53)

〈〈m2
u1,2

〉〉 ≃ 〈〈m2
di
〉〉 ≃ 1.04 mH(0)2, 〈〈m2

u3
〉〉 ≃ 0.374 mH(0)2

for i = 1, 2, 3 respectively. Note that the third family up-squark mass squares receive a

positive F-term contribution from their Yukawa interaction in (4). Although this contribu-

tion is of order T −2 and, hence, ignored in (53), it can be a sizable correction for smaller

values of tanβ. Since all scalar masses in (44), (52) and (53) are positive, we conclude that

the vacuum given in (50) is a stable, local minimum of the potential energy.

The vacuum state (50) spontaneously breaks both B-L and electroweak symmetry,

and exhibits a distinct hierarchy between the two. Using (36), we see that the ratio of the
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vacuum expectation values is

〈〈ν3〉〉
〈〈H ′0〉〉 ≃ (0.976)

√

3
5g2

1 + g2
2

√

3
4g4

tanβ

∆
, (54)

where the gauge parameters are computed at tEW . Choosing, for specificity, ∆ = 1√
2

and

evaluating (54) in the region 6.32 ≤ tanβ ≤ 40, we find that

19.9 ≤ 〈〈ν3〉〉
〈〈H ′0〉〉 ≤ 126 . (55)

A second measure of the B-L/electroweak hierarchy is given by the ratio of the B-L

vector boson mass to the mass of the Z boson. It follows from (21), (36) and (45) that

MAB−L

MZ
≃ (1.95)

tanβ

∆
. (56)

Again, using ∆ = 1√
2

and evaluating this mass ratio in the range 6.32 ≤ tanβ ≤ 40,

one finds

17.5 ≤ MAB−L

MZ
≤ 110 . (57)

Note that if we take ∆ → 1, the upper bound in our approximation, then
MAB−L

MZ
is

essentially 2tanβ, whereas if ∆ → 0 this mass ratio becomes arbitrarily large. For typical

values of ∆, we conclude that the vacuum (50) exhibits a B-L/electroweak hierarchy of

O(10) to O(102) in a physically interesting range of tanβ.

Finally, let us review the reasons for the existence and magnitude of the B-

L/electroweak hierarchy. First, initial conditions (11), (15) give emphasis to the right-

handed sneutrinos by not requiring their masses be degenerate with the Li and ei soft

masses. This enables the S ′
1 parameter (16) not only to be non-vanishing but, in addi-

tion, to be large enough to dominate all contributions to the RGEs with the exception

of the gluino mass terms. This drives m2
ν3

negative and initiates B-L breaking at scale

mν . Second, B and M3 (hence, mH(tEW )) are chosen to satisfy constraints (39) and (40)

respectively, with 0 < ∆2 < 1. This insures electroweak breaking for positive m2
H at a scale

proportional to ∆mH(0)/T . The large value assumed for T implies that the non-vanishing

VEV is largely in the H0 direction, allowing one to identify T , to leading order, with tan β.

Third, equation (51) insures that squark/slepton squared masses are positive at all scales.

This guarantees that the electroweak breaking is substantially smaller than the B-L scale,

with the B-L/electroweak hierarchy proportional to tan β/∆.
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